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Abstract--This paper reviews recent research on the use of numerical simulations to study the motion of 
particles in turbulent flows. The main emphasis is on direct numerical simulation (DNS). The techniques 
of DNS are briefly reviewed. The need to establish more appropriate particle equations of motion is 
discussed and recent progress is summarized. Results for both one-way and two-way (feedback) coupling 
are reviewed. 
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1. INTRODUCTION 

Since the early 1970s direct numerical simulation (DNS) of turbulent flows has become an 
increasingly useful research tool. Early studies were primarily limited to simulations in periodic 
boxes, which were models of isotropic, homogeneous turbulence. Simulations of two-dimensional 
flows, such as mixing layers, began to appear in the 1970s. In the 1980s, simulations of turbulent 
channel flow and boundary layers became feasible. 

The availability of reliable numerical simulations of turbulent or transitional flows has 
opened-up a number of possibilities for studying the influence of turbulence on various phenomena. 
Examples include chemical reactions, flow-induced vibrations, heat transfer and particle motion. 
This review focuses on the latter example. Although studying particle motion with a DNS of 
turbulence may yield useful insights into turbulence, a primary goal of the research is to gain more 
insight into the behavior of particles in complex flows. Issues of interest include the diffusion of 
aerosols from localized sources, the deposition of aerosols on solid surfaces, sedimentation, the 
feedback of particles on fluid motion and others. 

DNS is not the only numerical technique that is being used to study particle motion in turbulent 
flows. Much understanding has been gained by modeling turbulent flows with random eddies. 
However, it is not feasible to adequately summarize all the current research being done on particle 
motion using numerical methods. This review focuses on DNS, since it is the area with which the 
author has the most experience. However, large eddy simulations (LESs) and stochastic models are 
likely to be useful for many years, since a DNS is currently feasible only at Reynolds numbers that 
lie just above the transition point. 

Much research has been done on the motion of point particles in turbulence. Examples include 
Deardorff & Peskin's (1970) pioneering study using DeardorlYs (1970) channel flow simulation, as 
well as recent studies by Bernard et al. (1989) and Kontomaris & Hanratty (1993) with DNS of 
channel flow. However, this paper will focus on "real" particles that possess inertia. Furthermore, 
most of the discussion will concern aerosol particles, since the particle equation of motion takes 
a simpler form in this case. 

This review places more emphasis on techniques than results. One goal of the paper is 
to try to provide a summary of the techniques that have been used to date. A second goal 
is to point out the many difficulties that remain with these techniques. It is hoped that 
the discussion will stimulate further research on both DNS techniques and particle equations of 
motion. 
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2. COMPUTATION OF FLOWS 

2.1. D N S  o f  Turbulent  F low 

In the late 1960s, it became possible to perform DNS of low Reynolds number turbulent flows 
in periodic boxes. The Reynolds numbers were restricted to fairly small values because of the 
limited main memory available on the computers of that era. Orszag & Patterson (1972) reported 
the results of three such calculations for 323 grid points. 

Periodic boundary conditions permit the use of Fourier series expansions. In a fully 
spectral calculation, each term in the Navier-Stokes equation is computed in "spectral space", 
which means that one works only with the spectral coefficients of the velocity and pressure 
fields. The disadvantage of a fully spectral DNS is that the nonlinear term in the Navier-Stokes 
equation involves convolution sums that are extremely time-consuming. It is more efficient to use 
pseudospectral methods in which the nonlinear terms are computed in physical space. One 
computes the velocity and spatial derivatives of the velocity in spectral space and then Fourier 
transforms the results to physical space. While this approach is faster than a spectral evaluation 
of the nonlinear terms, it introduces aliasing errors. 

Orszag (197 la, b) has discussed the effects of aliasing errors on numerical simulations. One may 
compensate for aliasing by the "two-thirds" rule. A discrete Fourier transform evaluates the N 
terms in a Fourier series from the values of the function a grid of N equally spaced points. The 
aliasing error occurs when one multiplies two Fourier series containing N terms. One generates 
frequencies that cannot be resolved on the grid. Orszag suggested that one should expand the grid 
to 3 N / 2  points to evaluate products such as the nonlinear terms in the Navier-Stokes equation. 
An equivalent procedure is to set the top third of the Fourier series to zero and then Fourier 
transform to physical space on a grid containing N points. In discussing simulations, the author 
will refer to the number of "collocation" grid points on which one evaluates the nonlinear terms. 
When one uses the two-thirds rule, the effective grid spacing is 1.5 times larger than the grid spacing 
on the collocation grid, since one cannot resolve length scales corresponding to the Fourier 
coefficients that vanish. 

The DNS of turbulent flows near solid surfaces is considerably more difficult than periodic boxes. 
Deardorff (1970) performed an early simulation of turbulent channel flow. The simulation was 
performed by finite-difference methods on a grid with 6720 points. The flow in the core of the 
channel was treated as inviscid and the law of the wall was used to provide a boundary condition 
on the velocity field. 

Pseudospectral simulations of wall-bounded flows did not appear until the early 1980s. 
One difficulty associated with rigid boundary conditions is that they induce Gibb's phenomenon 
when ordinary Fourier series are used to express the dependence of the velocity and pressure 
fields on the coordinate perpendicular to the wall(s). Gottlieb & Orszag (1977) discuss the 
problem in depth. Orszag (1971c) recognized that this difficulty could be overcome by using 
Chebyshev series to expand the fields in the direction normal to the wall(s). However, the actual 
implementation of Chebyshev expansions was complicated and it was nearly a decade before the 
first results appeared. 

Orszag & Keils (1980) reported the results of a simulation of transitional flow in a channel 
formed by two infinite, parallel, rigid walls. They studied perturbations of the Poiseuille solution 
and observed the rapid growth of disturbances in the nonlinear stage of transition. They wrote the 
Navier-Stokes equation in the rotational form, 

&u 
Ot u x co - Vl-I/p + vV2u, [I] 

since Orszag (1971b) argued that this could improve the stability of a simulation at large 
Reynolds number. They used a "time-splitting" method to solve the Navier-Stokes equation. In 
their method, one computes the nonlinear term explicitly using the values of the velocity field 
on the previous two time steps. One then computes the pressure held by imposing incompressibility 
on the velocity field. The boundary conditions on the pressure are inviscid. When one imposes the 
boundary conditions, the resulting Poisson equation for the pressure field is nearly tridiagonal in 
the Chebyshev index. The computational work involved in solving the Poisson equation is roughly 
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equivalent to solving a pentadiagonal matrix equation. After adding the pressure field to the 
velocity field, one must incorporate the viscous term in a third fractional time step. They did this 
with an Euler backward step that involves solving a nearly tridiagonal matrix for the Chebyshev 
coefficients. 

Orszag & Patera (1981) reported the results of a simulation of channel flow in which they 
computed the von Kfirm~n constant. However, the flow for which they did the calculation was not 
in steady state. The spatially averaged wall shear stress had reached a maximum, which was roughly 
twice the steady-state value, at the time for which they calculated the von Kfirm~n constant. 

Moin & Kim (1982) reported the results of 4 LESs of steady-state turbulent channel flow. The 
channel half-width for their simulation was h ÷ = 320, which corresponds to a Reynolds number, 
based on the centerline velocity and the channel half-width, equal to 13,800. In one simulation, 
they used 65 grid points in the cross-stream direction (y), 64 points in the downstream (x) direction 
and 128 points in the spanwise (z) direction. The periodicity length in the downstream direction 
was 8042 wall units and the periodicity length in the spanwise direction was 2011 wall units. They 
used spectral methods in the x- and z-directions and a finite-difference method in y. To obtain 
agreement with the experimental fluctuation profile, they used subgrid scale modeling. 

Kim et al. (1987) reported the first DNS of steady-state turbulent channel flow. They used a 
fourth-order method that avoids the errors involved in the fractional step methods. They did their 
calculation for h ÷ = 180. Their periodicity length in the downstream direction was 2300 wall units, 
and their periodicity length in the spanwise direction was 1150 wall units. Their spatial grid 
contained 192 points in the downstream direction, 160 points in the spanwise direction and 129 
points in the direction normal to the wall. With the exception of the intensity of the fluctuations 
in the component of velocity normal to the walls and the skewness and flatness of the normal 
component of velocity, their results agree with the experimental measurements of Laufer (1954) 
and Kreplin & Eckelmann (1979). The intensity and flatness and the skewness of the normal 
component of velocity in the viscous sublayer differ significantly from the experimental obser- 
vations. Subsequent LDA measurements by Niederschulte (1988) (see also Niederschulte et al. 

1990) agree better with the results of Kim et al. (1987). However, it may be important to test further 
the validity of the channel flow simulations. 

McLaughlin (1989) reported the results of a study of particle motion in a channel flow 
simulation. Lyons et al. (1990) used the same program for a study of coherent structures. The 
program is a modification of a program developed by Azab & McLaughlin (1987) to simulate the 
viscous wall region. It is similar to the one developed by Orszag & Kells (1980) with two main 
differences. Azab & McLaughlin (1987) used a Green's function method devised by Marcus (1984) 
to include viscous pressure effects. Also, they devised an Adams-Bashforth-Crank-Nicholson 
(ABCN) fractional step for the nonlinear term that improved the stability of the time-stepping. The 
ABCN step differs from the one used by Orszag & Kells (1980) in that the spatially averaged 
velocity profile from the previous time step is used to stabilize the scheme. Orszag & Kells (1980) 
used the Poiseuille profile in their ABCN step. 

McLaughlin's (1989) DNS was for h ÷ =  125. He used periodicity lengths equal to 630 wall 
units in both the downstream and spanwise directions. The nonlinear terms were evaluated on a 
collocation grid with 16 points in the downstream direction, 64 points in the spanwise direction 
and 65 points in the normal direction. The DNS reported by Lyons et al. (1990) was for h ÷ = 150. 
The periodicity lengths in the downstream and spanwise directions were 1900 and 950 wall units, 
respectively. The nonlinear terms were evaluated on a collocation grid with 128 points in the 
downstream, 128 points in the spanwise and 65 points in the normal direction. Lyons et al. (1991) 
give the details of the channel flow code and a comparison with the results of Kim et al. (1987) 
as well as experimental results. 

Another channel flow DNS was recently reported by Rutledge & Sleicher (1993). Their technique 
is similar to that used by Kim et al. (1987), but differs in several details. Their results are for a 
channel with h ÷ = 180. The corresponding Reynolds number, based on the bulk velocity and the 
hydraulic diameter, is 11,200. The periodicity length in the downstream direction was 2262 wall 
units, and the periodicity length in the spanwise direction was 753 wall units. They made a detailed 
comparison of their results with those reported by Kim et al. (1987) and Lyons et al. (1991) as 
well as the experimental results of Kreplin & Eckelmann (1979), Niederschulte (1989) and Barlow 
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& Johnson (1985). The three numerical simulations are in close agreement in the viscous wall 
region. However, there remain unresolved differences with experimental results for higher order 
moments very close to the wall. 

Lam & Banerjee (1992) reported the results of a DNS of open channel flow. They assumed 
that the free surface was fiat but that the tangential stress vanished on the free surface. The 
dimensionless depth of the liquid was 120.8 wall units (based on the friction velocity at the lower 
wall where rigid boundary conditions were applied.) Pedinotti et al. (1992) used the same DNS in 
a study of the motion of particle motion near the solid surface. Their results provide insights into 
the tendency of particles to accumulate in the "low-speed streaks" observed by Runstadler et al. 
(1963) and others. 

2.2. Stochastic Methods 

Kraichnan (1970) suggested an alternative to DNS for calculating particle trajectories in 
turbulent flow. He suggested a model for isotropic, homogeneous turbulence based on a spectral 
representation in the form of a discrete Fourier series: 

u(r, t) = ~ u(k,)exp [i(k, • r - 09, t]. [2] 
n 

He picked the wavevectors, k,, from a statistically homogeneous distribution so that the energy 
spectrum, E(k),  would have the desired shape. For three-dimensional turbulence, he chose the 
spectrum 

f2VJ , / 
E(k)=  16 ~n)  ~ exp~--~0)" [3] 

The frequencies, 09,, were chosen from a Gaussian distribution with a standard deviation, 090- He 
presented results for 0990 = 0 and 090 = kovo. For large times, his results are consistent with Taylor's 
(1921) theory of diffusion of point particles in turbulent flow. Kraichnan applied the direct 
interaction approximation (DIA) (Kraichnan 1959; Roberts 1961) to point particle diffusion in 
homogeneous turbulence. He found close agreement between the DIA and the simulations for the 
dispersion of point particles. 

Maxey (1987) used Kraichnan's technique to study the settling of particles in homogeneous 
turbulence. He also pointed out some deficiencies of the approach. Triple correlations of the fluid 
velocity vanish and there is no representation of the energy transfer from large to small scales. 
However, he argued that these were not serious problems if one used the technique to study particle 
motion in low Reynolds number turbulent flows. 

Kallio & Reeks (1989) used a stochastic Lagrangian random-walk numerical technique to 
provide the fluid velocity at the location of each aerosol in a simulation of wall-bounded turbulent 
shear flow. This technique has the advantage of being relatively inexpensive, since one does not 
perform a DNS and one does not need to interpolate the fluid velocity at the location of each 
aerosol. The latter calculations are the primary expense in simulations involving very large numbers 
of particles. 

3. PARTICLE EQUATION OF MOTION 

3.1. One-way Coupling 

In the author's opinion, the uncertainties about the appropriate particle equation of motion are 
usually greater than those associated with the DNS used to generate the velocity field (at least for 
one-way coupling). Many issues are poorly understood. If one restricts the discussion to "small" 
particles, one can sometimes make use of results from low Reynolds number hydrodynamics to 
suggest an appropriate form for the equation of motion. However, even in this limit, there are 
difficulties. 

At a starting point, let us consider the equation of motion derived by Maxey & Riley (1983). 
These workers considered the motion of a small sphere in a velocity field that varied slowly in space 
and time. They assumed that one can characterize the velocity field by a length, L, and that a ,~ L, 
where a is the radius of the sphere. They also assumed that the characteristic Reynolds numbers 
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based on the sphere's diameter are small compared to unity. To leading order, the disturbance flow 
created by the sphere obeys the unsteady Stokes equation. Effects such as the lift force derived by 
Saffman (1965, 1968) appear at the next order in the particle Reynolds numbers. 

An interesting feature of the problem is that the particle's equation of motion does not involve 
feedback effects. In other words, one needs only to know the undisturbed fluid velocity field to 
compute how the particle will move. This is a considerable computational advantage in that one 
can perform the DNS without considering the particle. Unfortunately, although this feature is 
computationally convenient, it is not satisfied in many situations of practical interest. 

The Maxey-Riley theory does not consider interactions between particles. If one wishes to apply 
their theory to a dispersion of particles in a turbulent flow, the average spacing between particles 
must be very large compared to their radius. One must also consider the mass loading effect. For 
example, the density of a dusty gas that is 0.1 volume percent solids can be more than twice as 
large as the density of the clean gas. This is true because aerosols typically have a density that is 
O (103) times larger than air. 

Let us consider the Maxey-Riley theory in more detail. From the unsteady Stokes equation, they 
showed that 

a 2 d v _ 2 ( p - l )  - - / - -  - - - 2  [Du ldu  . d V 2 u ~  

dt 2 p + l  g + 2p + l k Dt + 2 dt + 20 dt ,] 

9 

2 p + 1  v -  u -  -~- Wu 

a 2 

a Re f'd  
30 6 = 7  dr. E41 

In [4], v is the velocity of a spherical particle of radius a. The undisturbed velocity field, 
evaluated at the position occupied by the center of the sphere, is denoted by u. The dimensionless 
parameter p is the ratio of the particle density to the fluid density. The time derivative D/Dt 
denotes a time derivative following a fluid element. The Reynolds number, Re, is based on the 
characteristic length, L, a characteristic velocity of the undisturbed flow, u0, and the kinematic 
viscosity, v: 

Re = u0L [5] 
lp 

• The terms on the right-hand side of [4] include the effects of gravity-buoyancy, added mass, the 
pressure gradient in the fluid, Stokes drag and the Basset memory term. The terms involving the 
Laplacian of the undisturbed fluid velocity represent Faxen corrections. 

The Maxey-Riley equation is a generalization of the Basset-Boussinesq-Oseen (BBO) equation 
for a sphere moving through an otherwise motionless fluid. Basset (1888), Boussinesq (1903) and 
Oseen (1927) considered a sphere that accelerates from rest in a fluid that is at rest (except for the 
disturbance created by the sphere). Landau & Lifshitz (1959) present a derivation of the BBO 
equation. 

Much work has been devoted to the motion of aerosols. In this case, the density ratio, p, is large 
compared to unity, and one may neglect many of the terms in [4]. In this case, one may use the 
following simplified equation of motion: 

dv u -- v 
- -  + g ,  [6] 

dt z 

where ~ is a particle relaxation time that is given by (for pp ~ pf)" 

2 a 2 pp 
z = 9  v pf" [7] 

In [7], pp is the density of the particle and pf is the density of the fluid. 
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When a particle is close to a solid boundary, [6] should be modified to include the effects of 
the wall on the drag coefficient. Although Maxey & Riley (1983) did not consider this problem 
in detail, it appears reasonable to modify the Stokes drag coefficient of the sphere by using 
Stokes flow results for the drag force on a particle moving through a linear velocity profile 
near a solid wall. Let us first consider motion perpendicular to the wall. In the following discussion, 
the mean flow points in the x-direction, the y-direction is perpendicular the wall and the z-direction 
is the spanwise direction. Cox & Brenner (1967) showed that, for Stokes flow, the drag force on 
a spherical particle of radius a is given by 

Fy=6rc#vyadpy(Y), [8] 

where the dimensionless quantity ~by may be obtained from an exact series solution derived 
independently by Brenner (1961) and Maude (1961). The variable y in [8] is the distance of the 
center of the particle from the wall. The series solution is not convenient for calculations because 
of its complexity. For large separations, y >> a, 

q ~ y = - ( l  + ~ y )  + O ( ( y ) 2 ) .  [9] 

For small y, Cox & Brenner (1967) used lubrication theory to show that the drag force diverges 
as the gap between the wall and the particle becomes small: 

[ ] 1 1 + +0.971214E [10] 

where 

y - a  
E - [lll 

a 

Dahneke (1974) suggested the following fit to Cox & Brenner's exact result for all particle-wall 
separations: 

where 

6 = y  --a  [131 

is the gap between the surface of the particle and the wall. Expression [12] differs from the exact 
result by < 10%. 

According to [10], it is impossible for a particle to reach a wall in a finite amount of time. 
It is the shear stress in the gap that produces the singular behavior in [10]. However, for particles 
moving through a gas, the continuum approximation breaks down when the gap between the 
surface of the particle and the wall becomes comparable with the molecular mean-free-path (m,f.p3 
of the gas. As pointed out by Cunningham (1910), one effect of this breakdown is that the 
continuum model overpredicts the magnitude of the shear stress on the surface of the particle in 
the gap. Dahneke (1974) suggested the following modification of the drag law to incorporate the 
effects of molecular slip: 

a l+~ 
~by = 1.42' [14] 

1 + - -  

where 2 is the molecular m.f.p. Kallio (1989) reported the results of simulations using the drag 
correction in [14]. 
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The above results for the drag on a particle show that the wall modifies the drag on a spherical 
particle when the particle is within a few diameters of the wall. When this is the case, the 
components of the drag force in the horizontal direction are also different. For example, let us 
consider the x-direction. Let us denote the shear rate by 

av~ [151 
Oy 

In the viscous sublayer, one might expect the velocity to be predominately in the x-direction. 
Provided that a particle is very small compared to the thickness of the viscous sublayer, it may 
be reasonable to use the results of Goldman et al. (1967a, b) for the drag force on a sphere near 
a wall in a linear flow field. They showed that the drag force is given by 

where 

Fx = 6~#aVx~x, [16] 

af~ 
~px=dP,x + - - d A x  + YGc~Gx . [17] 

/)x /)x 

Goldman et al. (1967a, b) showed that the functions c~tx, C~rx and ~box are functions only of the 
dimensionless ratio y /a  and tabulated them. The quantity f~ is the angular velocity of the sphere. 
In an unbounded shear flow, f~ = - G / 2 .  However, the presence of the wall reduces the magnitude 
of ft. Using the results in Goldman et aL (1967a, b), for a torque-free particle, 

G - to--~--Gt, 
n = [18] 

t, 

Goldman et al. showed that t,, t, and to are functions only of the dimensionless ratio y /a  and 
tabulated them. 

Goldman et al. (1967a, b) presented asymptotic expressions for the functions in the limit of large 
values of y/a:  

tktx = - -  1 + ]-~ , [191 

(a,x = ~ [20] 

9 a 
= - - - ,  [21] ~ox 1 + 16y 

F 
t, = / 3 2  \yJ J ' [22] 

and 

[ L(_ YI t, = - l + 16 \ y j  ] [23] 

tc = 1 - [24] 

Thus, the effect of the wall on the motion of the particle falls off as a/y  at large distances. In this 
regime, the leading result for ~bx is 

~ x = - - ( 1  9 a'~/' 1 

MF 20/7 Sup~N 
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For small values of E, ~ diverges. However, unlike ~b,., it diverges only 
Goldman et al. (1967a, b) showed that, as ~ ~0 ,  

qS,, = ~ ln(e), 

(~rv = - -  2 I n @ ) ,  

logarithmically. 

[26] 

[27] 

and 

In this limit, 

and 

~bc~ = 1.7005, [28] 

tt = - ~ ln(E), [29] 

tr = 2 ln(E) [301 

tG = 0.9440. [31 ] 

[32] 
4 a  

~b~ = 8 ln(E). [33] 

In a strongly sheared flow, inertial lift forces are likely to be important. These enter the 
Maxey-Riley theory at a higher order in the particle Reynolds number than the terms in [4]. 
Once again, there is a lack of  rigorous mathematical justification for using the available results 
for lift forces. All the existing theories of  lift forces at small but finite particle Reynolds numbers 
are derived for steady (laminar) flows. Thus, one must be guided by physical intuition in treating 
the lift force. In a turbulent channel or pipe flow, one might expect the lift force on an aerosol 
to be of  greatest importance in the viscous sublayer. In the viscous sublayer, the flow is relatively 
steady and the strongest mean shear rate occurs in this region. There is unsteadiness in the 
form of  sporadic bursts and sweeps and the flow is three-dimensional. However, the laminar flow 
results for the lift force have a greater chance of applying in this region than in other parts of the 
flow. 

Saffman (1965, 1968) published a result for the lift force on a small spherical particle in a steady, 
unbounded, linear shear flow. His result is valid provided that the relevant Reynolds numbers that 
characterize the disturbance flow created by the sphere are small compared to unity. Two such 
Reynolds numbers are 

IG ld 2 
Rec - [34] 

V 

and 

Ivsld 
Res - [35] 

In [34] and [35], d is the sphere diameter, G is the shear rate (which is assumed constant), and v~ 
is the "relative velocity". The relative velocity is the difference between the velocity of  the particle 
and the undisturbed fluid velocity at the center of  the sphere. Saffman considered a unidirectional 
flow with a constant shear rate: 

u = GyY~, [36] 

where :~ is a unit vector in the x-direction. He also assumed that the particle was constrained to 
move in the x-direction: 

v = u + vs:~. [37] 
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Saffman assumed that Res and ReG were both small compared to unity. In addition, he considered 
the strong shear limit defined by 

R ~ t / 2  ,,~ >> Re~. [38] 

He calculated the first two terms in an expansion of the lift force in powers of the particle radius. 
The first term takes the form 

F,=-6.46#v~a2sgn(G)(]-~-)I/2~, [39] 

where sgn denotes the sign of its argument. 
Positive values of vs correspond to particles that are moving faster than the surrounding fluid. 
In this case, the lift force points in the direction in which the fluid velocity decreases (i.e. the positive 
y-direction for negative values of G and the negative y-direction for positive values of G). 

Saffman's (1965, 1968) result has been generalized in several ways. Harper & Chang (1968) 
generalized the result to ellipsoidal particles. Drew (1978) considered general two-dimensional 
linear flow fields. McLaughlin (1991) removed the restriction D,I/2 l,,,o ~> Re~, and found that 

FI = _ 9  ~v~a 2 sgn(G) J(E)~, 
7t 

where 

[ 4 0 ]  

Re~ 2 
¢ = sgn(Gvs) Re~" [41] 

The dimensionless function J is tabulated by McLaughlin (1991). For values of IEI that are large 
compared to unity, 

0.6463 
J=2.225 E2 , [42] 

while, for I EI< 0.25, J is 2 orders of magnitude smaller than the large IEI asymptote (2.225). 
The latter result does not mean that the lift force is reduced by 2 orders of magnitude since 
Saffman's and McLaughlin's results are only the leading terms in an expansion in the particle radius 
(or, equivalently, in inverse powers of the viscosity). However, it suggests that, in this regime, the 
lift force will be much smaller in magnitude than one might guess from an (incorrect) application 
of Saffman's formula. 

Saffman's (1965, 1968) theory does not include the effects of a wall. Drew (1988) and 
McLaughlin (1993) included the effects of a distant wall. They assumed that 1 ~> a, where l is 
the distance between the center of the sphere and the wall. It is useful to introduce the dimensionless 
distance, l , ,  that is defined by 

l 
l ,  = ~ ,  [43] 

where 

I,, "~I12 
= " [441  

For l ,  ~ 1, McLaughlin showed that the lift force on a particle could be expressed as 

F, 9 2 JIG 1"~1/2 
= -~ I~vsa ~--~--} (ju + jw), [45] 

where ju is given by [40] and jw is a correction due to the wall that is a function of E and l , .  
McLaughlin (1993) tabulated jw for values of l ,  between 0.1 and 2 and values of IEI >t 0.2. For 
values of IEI< 0.2, JU is negligible and the wall contribution is given by Vasseur & Cox (1977). 
For values of l ,  > 5, the wall effect may be estimated from the asymptotic result 

1.879 
j w  _ /~3 • [46] 
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McLaughlin's (1993) result provides a connection between Saffman's (1965, 1968) and 
McLaughlin's (1991) results and theories of Cox & Brenner (1968) and Cox & Hsu (1977). 
The latter authors derived results for a sphere that is close enough to a solid wall that the wall 
lies within the "inner" region of the disturbance created by the sphere. This means that one may 
calculate the leading order lift by regular perturbation methods. On the other hand, they treated 
the sphere as a point force. Expressed in terms of the notation of this paper, they showed that. 
to leading order, 

J = ]-6 + l ,  . [47] 

Their results are valid provided that the sphere is many radii from the wall: 

where Ls is defined as follows: 

a <{ l ~ min(LG, L~), [481 

V 

Ls - I v~[" [49] 

When the Reynolds numbers of the disturbance created by a sphere are small and the sphere 
translates through an unbounded flow, inertia is a singular perturbation. The lengths in [44] and 
[49] characterize the distances from the sphere at which inertial effects significantly affect the 
disturbance created by a sphere translating through a linear shear flow. The length L a was identified 
by Saffman (1965) as characterizing the region that is responsible for the leading order lift in the 
strong shear limit. As pointed out by Vasseur & Cox (1977) and McLaughlin (1993), the linearized 
form of the Navier-Stokes equation that applies in the "Oseen" region defined by L~ and L~ also 
applies at distances that are small compared to these lengths but large compared to a. Thus, one 
can use singular perturbation methods to connect the results obtained by Saffman (1965, 1968) and 
McLaughlin (1993) with the results derived by Cox & Hsu (1977) for a small sphere in a 
wall-bounded linear shear flow. 

The above results for the lift force are valid provided that a ,~ l. Leighton & Acrivos (1985) 
derived the leading-order result for the lift force for a stationary sphere that is in contact with a 
flat, rigid surface. They assumed that the undisturbed flow is a linear shear flow. The lift force 
points away from the wall and it varies as the fourth power of the sphere radius. Recently, Cherukat 
& McLaughlin (1994) have derived results for the range of distances a < l  <{min(L~;,L~). 
Their results can be fitted with the following expression: 

FI = -pa2v~ L [50] 

where the dimensionless factor I is given by 

I -- (1.7631 + 0.3561 ~c - 1.1837r 2 + 0.845163~ 3) 

(3 "24139+2.6760+0.8248 ~ _ 0.4616K2)AG 

+ (1.8081 + 0.879585K -- 1.9009x 2 + 0.98149x3)A~. [51] 

In [51], x = a/l  and A G = -Ga/vs .  The expression for the lift force in [50] and [51] reduces to the 
Cox-Hsu formula for small values of K (i.e. l >> a). 

The above results are for linear, time-independent velocity profiles. Vasseur & Cox (1977), 
Cox & Hsu (1977), Schonberg & Hinch (1989) and Drew et al. (1991) presented results for 
time-independent parabolic velocity profiles. However, there are still gaps in our knowledge for 
parabolic profiles. The author is not aware of any results for more general velocity profiles, for 
time-dependent flow or accelerating particles. 

For particles < 1 #m in diameter, Brownian effects are likely to be important. In air, the 
molecular m.f.p, is roughly 0.1/am. There are two effects that should be considered when a 
particle's size is comparable with or smaller than the molecular m.f.p. The Stokes flow drag 
coefficients overpredict the actual drag on a particle because of Knudsen-type slip. One way of 
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modeling this phenomenon is to introduce the slip factor suggested by Cunningham (1910). Davies 
(1945) offered a modified form of the Cunningham factor: 

Cc = 1 + ~ 1.257 + 0.4 exp . [52] 

The second effect that one must consider is Brownian motion. Brownian motion is caused 
by the impacts of molecules with a particle. If the particle is very large compared to the 
molecular m.f.p., there are so many collisions within the time needed for the particle to respond 
that their effects cancel. However, small particles will move in a fashion similar to a random 
walk. 

Gupta & Peters (1985) used a Brownian dynamics (BD) technique to simulate the diffusion of 
very small particles. The BD technique uses random numbers to model the effects of molecular 
collisions with small particles. One assumes that a random force acts on the particle. If the random 
force per unit mass is denoted by n, 

dv u - v 
- -  + g + n .  [531 

dt 

One assumes that n is a white noise process. The strength of the white noise process may be deduced 
from the diffusivity of a Brownian particle based on Einstein's theory of Brownian motion (e.g. 
Becker 1967). Gupta & Peters (1985) discussed a time-stepping technique for solving particle 
equations of motion similar to [53]. Ounis et al. (1991, 1993) used a similar technique to study the 
motion of submicrometer aerosols in a DNS of turbulent channel flow. 

3.2. Two-way Coupling 

Even less is known about the equation of motion for two-way coupling problems than for 
one-way coupling problems. Once again, it appears that the "easiest" case is that of aerosols. 
One can identify different regimes of particle concentration. For the purpose of discussion, let us 
take the density ratio, Pp/Pr, to be 1000. In the truly dilute limit, one can neglect mass-loading 
effects as well as particle-particle interactions. If one denotes the number of particles per unit 
volume by n, then the dilute limit corresponds to na 3 ~. 10 -3 . The typical distance between a particle 
and its nearest neighbor is l = l/n ~/3. Thus, in the dilute limit, l >> 10a. In this limit, researchers 
have generally used [6] or some modification of it. 

An intermediate case is when na 3 ~ 10 -3. In this case, the effective density of the dusty gas 
is significantly higher than that of the clean gas. Furthermore, if the particle concentration 
is not uniform, the effective density of the dusty gas will vary in space and time. Tang & 
Crowe (1989) developed a technique for simulating free shear layers in dusty gases. They treated 
only two-dimensional, high Reynolds number flows. They solved the following equations: 

V21]Y ~ - -  (D, 

where q is the streamfunction and ¢o is the vorticity; and 

[54] 

Da) I 

Dt PG 
e x fD, [55] 

wheref  D is the reaction force of the particles per unit volume on the fluid and PG is the mass density 
of the clean gas. If the motion is in the x - y  plane, 

where ~ is a unit vector in the z-direction. 
The reaction force in [55] was calculated from 

[56] 

fD = p'~f(vp - v c ) ,  
T 

[57] 
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where p~ is the mass of particles per unit volume of the dusty gas and z is the relaxation time of 
the particles. The factor f in [57] corrects for finite particle Reynolds numbers: 

f = 1 + 0.15 Re~ '3. [58] 

The particle Reynolds number, Res, is defined by [35]. 
Tang & Crowe (1989) implemented the above equations by seeding the flow with "computational 

particles". They assumed that each computational particle contained Np particles all moving with 
the velocity %. 

Truesdell & Elghobashi (1991; Elghobashi & Truesdell 1993) used a similar particle reaction force 
in a DNS of homogeneous turbulent flow. One difference is that they tracked individual particles 
rather than using computational particles. 

4. COMPUTATION OF TRAJECTORIES 

In computing trajectories, one may use time-differencing schemes to integrate the ordinary 
differential equation (ODE) for the particle equation of motion. A variety of schemes have been 
used in such calculations. As an example, McLaughlin (1989) used a second-order Adams scheme 
for this purpose. 

If one wishes to integrate [6], one needs to evaluate the undisturbed fluid velocity at the point 
occupied by the center of the particle. Deardorff & Peskin (1970), Riley & Patterson (1974) and 
Bernard et al. (1989) used trilinear interpolation for this purpose. On a marginally resolved grid, 
there can be significant velocity variations between grid points and it is not clear that linear 
interpolation will give reliable values. McLaughlin (1989) directly evaluated the spectral sums 
for the fluid velocity at the location of each particle. This method introduces no errors other than 
those inherent in the DNS itself. However, it is extremely expensive when large numbers of particles 
are used. 

Yeung & Pope (1988) explored the use of different interpolation techniques to track fluid 
particles in DNS of homogeneous turbulence. They reported results with 323, 643 and 1283 grid 
points. One conclusion of their study is that linear interpolation gives unacceptable accuracy 
when it is used to compute Lagrangian statistics. As alternatives to linear interpolation, they 
studied the use of cubic splines and third-order Taylor series expansions. They found that 
cubic splines were more accurate than the third-order Taylor expansion. However, cubic splines 
are also more expensive than Taylor expansions. They found that a 13-point third-order Taylor 
expansion gave acceptable accuracy in their runs, even though it does not yield continuous 
approximations. 

Balachandar & Maxey (1989) studied the use of direct summation, Lagrangian interpolation, 
partial Hermite interpolation, linear interpolation and a shape function method in evaluating 
fluid velocities from Fourier series. They found that partial Hermite interpolation gave accept- 
able accuracy and was far less time-consuming than direct summation. Partial Hermite inter- 
polation consists of evaluating the exact spectral sum for a velocity component and its spatial 
derivatives in one coordinate at four points surrounding a point of interest. One then uses Hermite 
interpolation in the remaining two coordinates to obtain an approximation to the fluid velocity 
at the point of interest. This process may be efficiently implemented by performing the particle 
tracking step at a point in the DNS program where the fluid velocity and its spatial derivatives 
are in physical space in two dimensions and in spectral space in the third direction. 

The above procedures may also be used in a DNS of channel flow. In this case, a Chebyshev 
expansion is used in the direction normal to the wall. Kontomaris et al. (1992) studied the use of 
linear interpolation, third-order Lagrangian interpolation, fifth-order Lagrangian interpolation, 
cubic splines and partial Hermite interpolation. A conclusion of their study is that, in applications 
requiring high resolution accuracy on relatively coarse grids, partial Hermite interpolation 
may be superior to the Lagrangian interpolation schemes. A disadvantage of partial Hermite 
interpolation is that one must compute the values of several spatial derivatives in addition to the 
function itself on an array of points. In practice, this means additional CPU time and memory 
requirements. 
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Brooke et al. (1992) used partial Lagrangian interpolation of order 6 in a study of aerosol motion 
in a high-resolution channel flow DNS (128 points in x, 65 points in y, and 128 points in z). 
Ounis et al. (1991, 1993) used partial Hermite interpolation in a study of aerosol motion in a 
lower-resolution channel flow DNS. 

5. RESULTS FOR ONE-WAY COUPLING 

An early study of particle motion in a decaying turbulent flow by Riley & Patterson (1974) is 
a typical example of a DNS of turbulence in a periodic box. Their DNS was for a cubic box. They 
used 32 grid points in each direction. They used a Gaussian random initial condition and 
time-evolved the flow until the skewness had reached a quasi-steady value and the transfer spectrum 
developed a shape that is characteristic of turbulent flows. At this point, small particles were seeded 
in the flow field and their trajectories were computed. They ignored the interactions between 
particles and the feedback of the particles on the flow. They included only a Stokes drag in the 
particle equation of motion. 

Riley & Patterson (1974) studied Lagrangian and Eulerian two-point correlations. For fluid 
particles, the Lagrangian autocorrelation was larger than the Eulerian correlation for shorter times, 
but for larger times the opposite was true. They found that the Lagrangian autocorrelation for real 
particles increased as the relaxation time, r, increased. 

Since they ignored the effect of gravity, Riley & Patterson did not observe the "crossing 
trajectories" effect that was identified by Yudine (1959) and discussed by Csanady (1963). The 
crossing trajectories phenomenon is caused by particles "falling out" of an eddy. Particle inertia 
can also cause a particle to be "centrifuged" out of an eddy by its own inertia. It is difficult to 
distinguish between these effects with experimental methods. Snyder & Lumley (1971) reported the 
results of experiments in which they photographically tracked particles in grid-generated turbulence 
and discussed the diffusion particles and the effect of the particle relaxation time. Wells & Stock 
(1983) performed experiments with electrically charged particles. By imposing an electric field, they 
were able to reduce the effect of gravitational settling. They found that the crossing trajectories 
effect is not important for particles having settling velocities that are small compared to the r.m.s. 
fluid velocity. When it is significant, the crossing trajectories effect tends to reduce the diffusion 
of particles. The reduction of the diffusivity for motion normal to the settling direction is greater 
than the reduction of the diffusivity parallel to the settling direction. 

Squires & Eaton (1991a) have investigated the above phenomena with a DNS of homogeneous 
turbulence. An advantage of DNS is that one can delete either of the terms in [6]. They found that 
the inertia effect tends to increase particle diffusion and that the crossing trajectories tend to reduce 
particle diffusion. Their results agree with the theoretical predictions of Reeks (1977). Yeh & Lei 
(1991) found consistent behavior with an LES of homogenous turbulence. 

Numerical simulations are also being used to study the deposition of aerosols onto solid surfaces. 
Aerosol deposition is a very complex phenomenon. Gravity, Coulombic and Van der Waals forces, 
inertia, Brownian motion, wall corrections to the drag laws, the orientation of the surface, particle 
rebound and the smoothness of the surface are only some of the issues that must be addressed. 
If one restricts attention to aerosol deposition in vertical channels or pipes, gravity cannot directly 
cause the deposition of particles. Provided that the aerosols are not charged, one can also eliminate 
Coulombic forces. For aerosols that are larger than about I pm, Brownian motion should be 
unimportant. However, even with these simplifications, the problem is still difficult. 

Friedlander & Johnstone (1957) carried out experiments on the deposition of aluminum and iron 
dust in a vertical pipe. They used double-sided adhesive tape to trap the particles and then counted 
them to determine the deposition rate. Based on their findings, they proposed a model of aerosol 
deposition based on the concept of free-flight. They suggested that aerosols move from the core 
of the pipe to the edge of the viscous sublayer by turbulent diffusion. They assumed that all aerosols 
that reach the edge of the sublayer reach the wall by a free-flight. This means that the aerosols 
have sufficient momentum to reach the wall without any "help" from the fluid, since they assumed 
that the sublayer was stagnant. Thus, one must assume that the aerosols have normal components 
of velocity that are very large compared to the intensity of the normal component of the fluid 
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velocity at y + = 5. For example, for an aerosol with z ÷ = 5 to reach the wall from y ÷ = 5, its 
normal component of velocity must be at least unity in wall variables (i.e. it must be at least as 
large as the friction velocity.) 

Numerous authors criticized the Friedlander-Johnstone (1957) theory. Cleaver & Yates (1975) 
proposed a different model in which the aerosols are carried to the wall by eddies. Their 
model makes use of experimental findings by Runstadler et al. (1963), Kline et al. (1967) and 
Corino & Brodkey (1969) that the viscous sublayer is not a "laminar sublayer" as people had 
previously thought. It is now known that the flow in the viscous sublayer is three-dimensional and 
time-dependent. Flow visualization experiments reveal the presence of "low-speed streaks" that 
have a typical spanwise spacing equal to 100 wall units. Sporadic sweeps and bursts cause an 
exchange of fluid and particles between the sublayer and the core of the flow. 

McCoy & Hanratty (1977) reviewed a number of experimental studies of aerosol deposition in 
vertical pipe flows. They suggested a fit to the experimental deposition rates as a function of the 
dimensionless relaxation time, z +. For z + >  ~20, the deposition rate is roughly constant. 
However, for z ÷ < ~ 20, the dimensionless deposition rate is proportional to the square of r ÷" 

k~ = 3.25.10-4z ÷2. [59] 

The deposition rate is defined by 

J 
kD = -,  [60] 

c 

where j is the flux of particles onto the wall(s) and c is the number of particles per unit volume 
in the core of the duct. Based on their own experiments with olive oil droplets, Liu & Agarwal 
(1974) also concluded that the dimensionless deposition rate is proportional to (~ +)2 for z ÷ < 20. 
For very small values of z +, Brownian motion affects the deposition rate for realistic laboratory 
flows. It is not possible to give a precise value of ~ ÷ at which Brownian effects will dominate, since 
the Brownian diffusivity depends on the physical size of the particle. However, for particles in the 
Brownian regime, the deposition rate decreases with T ÷ if one fixes the material of the particle 
(e.g. polystyrene) and the friction velocity and varies the radius of the particles. 

Kallio & Reeks (1989) reported a numerical study of aerosol deposition in a turbulent channel 
flow. They assumed that, when a particle strikes the wall, it adheres to it. Such an assumption may 
be reasonable for aerosol droplets, provided that they are not too large. They included the Saffman 
lift force and the Stokes drag force in the particle equation of  motion, but they neglected the effect 
of gravity. Their simulation may be viewed as a simulation of a vertical duct flow. There are indirect 
ways in which gravity might play a role in particle deposition in vertical ducts. For example, in 
a vertical flow, a particle's sedimentation velocity will contribute to the lift force acting on the 
particle. However, estimates of the size of such effects for realistic laboratory flows suggest that 
they are not important (e.g. McLaughlin 1989). 

Kallio & Reeks (1989) performed calculations for values of ~+ between 0.3 and 1000. They 
compared their predictions with the experimental findings of Liu & Agarwal (1974). For r ÷ > 10, 
the experiments and numerical results are in agreement. For smaller values of r ÷, simulations which 
include the Saffman lift force overpredict the experimental values for z ÷ > ~ 3 and underpredict 
the experimental values for smaller values of z +. When the Saffman lift force is not included, the 
simulations underpredict the experimental observations for z+<- - ,5 .  The Saffman lift force 
consistently increases the computed deposition rates for ~ ÷ < ~ 20. 

Kallio & Reeks (1989) also studied the time evolution of the particle concentration in their 
simulation. Although the particles were initially seeded uniformly in the flow, they observed an 
increase in the particle concentration in the viscous sublayer for particles with too little inertia to 
be projected across the sublayer. This phenomenon is similar to "turbophoresis" which was 
discovered by Caporaloni et al. (1975) and, independently, by Reeks (1983). 

McLaughlin (1989) performed a numerical study of aerosol deposition in a vertical channel using 
DNS to provide the fluid velocity. He studied aerosols in the range 2 ~ z ÷ ~< 6 and with the density 
ratio corresponding to olive oil droplets in air. In some calculations, he included the Stokes 
drag force and the Saffman lift force in the aerosol equation of motion. In other calculations, he 
included only the Stokes drag force. When the Saffman lift force was not included, his simulations 
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underpredicted the experimental values over the entire range. When the Saffman force was 
included, the predicted deposition rates were higher than the experimental values for z ÷ > ~ 1.5. 
Although the Saffman lift force had a significant effect on the deposition rate, McLaughlin also 
noted that the conditions for the validity of the Saffman theory were not satisfied. Particles that 
deposit typically move through the viscous sublayer with relatively large normal components of 
velocity. As a result, the particles develop large streamwise relative velocities. The particle Reynolds 
numbers typically reach values of order unity. The principal contribution to the Reynolds number 
is from the streamwise component of velocity. In addition, the ratio E defined in [41] is typically 
smaller in magnitude than unity. This is also a consequence of the large streamwise relative velocity 
that results from the particle's large normal component of velocity and the steep fluid velocity 
gradient in the viscous sublayer. Saffman (1965, 1968) assumed that the particle Reynolds numbers 
were small compared to unity and that IEI was large compared to unity. McLaughlin's (1991) 
generalization of Saffman's theory suggests that the true shear-induced lift force is much smaller 
than Saffman's formula would predict for I EI<  1. The asymptotic theory agrees with the 
experimental observations of particle migration velocities in a plane Couette device by Cherukat 
et al. (1994) for Res < 1. 

Like Kallio & Reeks (1989), McLaughlin (1991) noted a tendency of particles to accumulate in 
the viscous sublayer. This phenomenon is caused by the variations in the intensity of the normal 
component of the fluid velocity. Particles are thrown toward the wall by strong fluid motions. 
If the particles do not have enough momentum to reach the wall, they can reside for very large 
amounts of time near the wall, where the intensity of the normal component of fluid velocity is 
very small. While this is similar to turbophoresis, it is not clear that it can be described by the same 
mathematics. Turbophoresis is a drift motion that is superposed on an otherwise random walk. 
The aerosol almost follows the fluid, but it overshoots the motion of a fluid particle because of 
its own inertia. These overshoots result in a drift because of the gradient in the intensity of the 
normal component of the velocity. However, McLaughlin observed aerosols that were projected 
toward the wall with very large normal components of velocity [comparable with the values of 
the core of the flow, as suggested by Friedlander and Johnstone (1957)] and which move in a 
unidirectional fashion until they reach a deep point within the viscous sublayer. 

McLaughlin also evaluated the Reynolds number of the aerosols that deposit as they move 
toward the wall. Even for z ÷=  2, aerosols develop Reynolds numbers that are close to unity. 
To quantify this result, he performed conditional averages of the aerosol Reynolds number at 
various distances from the wall. The condition is that an aerosol is on a unidirectional flight to 
the wall at a given point. For z ÷ = 2, the conditionally averaged Reynolds number is 0.7 at y ÷ = 2. 
If one computes the average Reynolds number of all aerosols at a given y ÷ it is much smaller than 
the conditionally averaged value. The largest value of the average Reynolds number for z + = 2 
is 0.03. 

Thus, there are some aerosols for which the use of low Reynolds number assumptions 
is questionable. An ad hoc procedure is to use a correlation such as [58] to correct the drag 
coefficient. Clift et al. (1978) have compiled a number of such correlations and their ranges of 
applicability. As long as wall effects and/or velocity gradient affects are not important, this 
procedure is reasonable since one is using the correlation for conditions similar to those of the 
experiments that were used to generate the correlations. However, when a particle is close to a wall 
or when the flow is strongly sheared, it is not clear that one can obtain reasonable results by 
superposing results for the lift force with the drag force that is based on measurements far from 
the nearest wall. 

Although this review emphasizes macroscopic particles, some related research has been done on 
macromolecules by Massah et al. (1993). Massah et al. (1993) used a DNS of turbulent channel 
flow to study the motion of high molecular weight polymers in turbulent shear flows. Toms (1948) 
found that very small amounts of high molecular weight polymers can significantly reduce turbulent 
drag. Lumley (1967) suggested that the polymers unravel when exposed to high strain rates and 
selectively increase the local rate of dissipation of turbulence energy. It is difficult to test this idea 
in the laboratory. Using a bead-spring model of a polymer molecule, Massah et al. (1993) studied 
the conformation of a random polymer chain both in laminar shear flows and a DNS of turbulent 
channel flow. They found that the chains unravel even in simple shear flows for strong shear rates. 
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Surprisingly, they found that the chains tend to align with the flow direction rather than the strain 
axis. In a turbulent shear flow, the polymers unravel in the viscous sublayer and make a 7 : angle 
with the mean flow direction. However, to date, no results for polymer feedback have been 
published. 

6. RESULTS FOR TWO-WAY C O U P L I N G  

There are fewer numerical simulation results for two-way coupling than for one-way coupling. 
There is a much larger body of experimental research on turbulence modification by particles. 
Hetsroni (1989) has reviewed research on two-way coupling in turbulent flow and the reader is 
referred to that paper for a discussion of experimental work in the field. 

The two-dimensional shear layers considered by Tang & Crowe (1989) are not turbulent, but 
they involve vortical motion and the authors were able to check their findings against experimental 
observations. The large vortical motions in the shear layer tend to centrifuge particles from the 
interiors of  the vortices. This phenomenon is similar to that predicted by Maxey (1987) in his study 
of  the sedimentation of particles through homogeneous turbulence. Tang & Crowe (1989) illustrate 
the phenomenon with a photograph of a particle-laden mixing layer taken from an experimental 
study by Kamalu et aL (1988). 

Tang & Crowe (1989) found that the particles inhibit the pairing of vortices. They seeded the 
shear flow with a uniform distribution of particles at the beginning of their numerical experiments. 
Initially, the flow is a perturbation of a one-dimensional free shear layer. The elementary vortices 
used in their numerical technique are arranged to form four identical sinusoidal rows. Each row 
consists of  two sinusoidal waves in wavelength 2. If the velocities of  the free streams are denoted 
by U~ and U2, one can define a velocity scale, U, by 

U t -  
U - [61] 

2 

One may introduce a "Stokes number",  St, that is a measure of particle inertia as follows: 

rU 
St = ~ - .  [62] 

£ 

The Stokes number may be viewed as a dimensionless relaxation time. For turbulent flow, the 
friction velocity, u , ,  and the kinematic viscosity are used to nondimensionatize the relaxation time. 
Tang & Crowe (1989) performed calculations for St = 10. 

Tang & Crowe (1989) characterized the concentration of particles by the mass concentration 
ratio, C, 

C = p--~ [63] 
PG 

(see [57]). They reported results for C = 10. 
When they ignored the feedback of  the particles on the gas, Tang & Crowe (1989) found that 

neighboring vortices merged in a time equal to 2.362/U. However, when they included particle 
feedback, they found that the vortices did not merge until 4.202/U. The final structures are similar 
in size and appearance, and the particles are centrifuged out of the vortex cores in both cases. 
Thus, the particles slow the vortex-pairing process. 

Two numerical simulations of particle feedback on turbulence have appeared in recent years. 
Squires & Eaton (1990) studied particle motion in a steady-state homogeneous turbulent flow. 
Elghobashi & Truesdell (1993) studied particle motion in a decaying (in time) homogeneous 
turbulent flow. An advantage of  homogeneous turbulence is that the flow is less complicated than 
shear flows and this may simplify the interpretation of  the results. 

To obtain steady-state turbulence, one must supply energy to the flow. Squires & Eaton (1990) 
choose to feed energy to the low-wavenumber component of their flow. They used [6] without the 
gravity term. They investigated a range of  solid volume fractions for which significant feedback 
effects occur. However, in all cases, the volume fractions were small enough that one could ignore 
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particle-particle interactions. They used simulations with 323 and 643 points. In some simulations, 
they used 3.73 • 105 particles, while, in others, they used 106 particles. They varied the mass loading 
from 0.1 to 1. In each simulation, they allowed no coupling between the phases until a statistical 
steady state had been reached. 

When no feedback was allowed, Squires & Eaton (1990) found a very pronounced tendency for 
particles to accumulate in regions of low vorticity. This behavior is consistent with Maxey's (1987) 
predictions. They found that this tendency was less pronounced for particles having larger Stokes 
numbers (i.e. particles that have more inertia). 

When Squires & Eaton (1990) allowed feedback, they found that the turbulence energy decreased 
and the rate of dissipation increased by as much as a factor 2. When they investigated the 
wavenumber spectra, they found that the energy in the highest wavenumbers increased relative to 
the energy in the lower wavenumbers because of the particles. 

Squires & Eaton (1990) also found that feedback modifies the tendency of particles to accumulate 
in regions of low vorticity. They found that particles having a Stokes number that is small 
compared to unity are less likely to accumulate in regions of low vorticity. However, for particles 
with Stokes numbers closer to unity, they observed the opposite effect. However, for both types 
of particles, as one increases the mass loading, there is an increased tendency for particles to 
accumulate in regions of high strain rate and low vorticity. 

A goal of the calculations by Elghobashi & Truesdell (1993) was to identify the influence of 
particles on the cascade of turbulent energy through wavenumber space. Thus, they chose to 
investigate decaying turbulence to simplify the analysis of the energy transfer. Although they 
performed calculations for aerosols, they retained simplified forms of the added mass, pressure 
gradient and Basset terms in addition to the Stokes drag and gravity-buoyancy terms. As expected 
the Stokes drag and gravity-buoyancy terms were dominant. 

Elghobashi & Truesdell (1993) investigated the effects of particle response time, particle diameter, 
particle volume fraction and gravity on turbulence structure. Quantities of interest included the 
total turbulent energy, the dissipation rate, the spectral decomposition of these quantities and the 
rate of energy transfer. 

To generate homogeneous turbulence, Elghobashi & Truesdell (1993) initialized the Fourier 
coefficients of the velocity field according to the energy spectrum 

2 2re k~ exp - . [64] 

They time evolved the velocity field until the energy cascade in spectral space has been established. 
They then introduced particles into the flow. Each particle was given a velocity equal to the 
undisturbed fluid velocity at the location of the particle. 

To investigate the effect of the particle relaxation time, they fixed the particle diameter and varied 
the density of the particle. They found that the rate of dissipation increased with z. To gain more 
insight into this phenomenon, they studied the wavenumber spectra of the energy and the 
dissipation rate. For dimensionless wavenumbers < 18, the particles increase the energy spectrum. 
For larger wavenumbers, the particles lower the energy spectrum. Associated with this behavior 
is a corresponding increase or decrease in the spectrum of the dissipation rate. Thus, the particles 
tend to redistribute energy from high wavenumbers to low wavenumbers. When they studied the 
spectrum of the rate of energy transfer, T(k), they found that the particles tend to suppress the 
transfer of energy for dimensionless wavenumbers < 18. The particles have the opposite effect 
for larger wavenumbers. 

The particles in Elghobashi & Truesdell's (1993) DNS were smaller than the Kolmogorov scale 
of the turbulence. Thus, one would not expect them to directly influence small wavenumbers (large 
lengths). The physical explanation for their observations is that the particles impart their energy 
to small eddies (high wavenumbers). This increases the rate of dissipation at high wavenumbers. 
The transfer function is affected by nonlocai triad interactions in Fourier space. When the 
dissipation rate is increased at large wavenumbers, the transfer function at smaller wavenumbers 
is increased. Thus, the energy of the smaller scales in the energy-containing eddies is more rapidly 
depleted. Since these smaller eddies are suppressed, the energy in the largest eddies tends to reside 
in them for a larger time. 
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To investigate the effect of particle diameter, Elghobashi & Truesdell (1993) fixed the particle 
relaxation time and varied the particle material density, pp. In doing this, they held the volume 
fraction and the relaxation time of the particles constant. Thus, by decreasing pp, they decreased 
the particle mass loading and the number of particles per unit volume. The effect of varying the 
particle diameter on the turbulent energy and rate of dissipation was considerably smaller than the 
effect of varying the relaxation time for a fixed diameter. 

Elghobashi & Truesdell (1993) also investigated the effect of varying the volume traction of 
particles for a fixed type of particle. As expected, they found that the effects on the energy and 
rate of dissipation increased with the volume fraction. 

In performing the above calculations, Elghobashi & Truesdell (1993) neglected the effects of 
gravity. They also investigated the effects of gravity. In principle, one could compare the results 
of these computations with the experiments performed by Wells & Stock (1983). The feedback of 
the particles makes the flow anisotropic. Qualitatively, the effect of the particles on the energy and 
dissipation spectra is similar to the gravity-free case. However, as gravity is increased, the 
"cross-over" wavenumber decreases from 18 to 9 for the case in which gravity is strongest. 
Further, the cross-over wavenumber decreases with time. The pressure-strain correlation redis- 
tributes energy from the vertical direction to the two horizontal energies and a reverse cascade 
energy from small scales to large scales results. This reduces the rate of decay of turbulence energy 
compared to the gravity-free case. 

7. CONCLUSION 

Given the unresolved questions surrounding DNS techniques as well as the particle equation of 
motion, it is probably true that the main value of the research in this field has been to stimulate 
experimental and theoretical research on relevant issues. Perhaps one can view many of the results 
to date as a sensitivity analysis in which one selectively includes or deletes various effects such as 
gravity, particle inertia, lift forces and others. This approach permits one to obtain a rough estimate 
of the importance of such effects in various phenomena such as particle dispersion. 

By far the biggest challenge is to develop techniques to simulate particle-laden flows when the 
concentration of particles is enough to significantly modify the flow. Some steps have been 
taken in this direction. However, the inclusion of effects such as wall corrections to the drag, 
lift forces and effects like the Basset memory term that may be important for liquid flows will 
require further modeling and theoretical developments. Even in the dilute limit, there is much 
theoretical work that, in the author's opinion, should be done to put particle calculations on a 
sounder footing. 
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